
Object Security and Personal Information
Management

Rolf Blom Mats Näslund Göran Selander

Ericsson Research
SE-16480 Stockholm, Sweden

email: {rolf.blom,mats.naslund,goran.selander}@era.ericsson.se

April 27, 2001

Abstract

We propose a new security architecture, the Object Security Architec-
ture, enabling users to securely store data on (distributed) servers, not
completely trustworthy, while at the same time allowing users to share
the data according to their own trust models. Moreover, it provides a
corporation with means to completely outsource storage of sensitive infor-
mation. The architecture seems highly suitable for personal information
management, e.g. calendars and email.

1 Introduction

With the increasing use of IP and Internet technology aspects like privacy and
security becomes more and more important. Certainly, many applications will
never become generally accepted unless they in a convenient way provide ade-
quate security and privacy for users and information owners. The privacy and
security should be provided in a world where the users are mobile, almost al-
ways connected via different types of wireless and wired access networks, using
different clients and are enabled to interact locally work off-line.

If not already today then certainly in the near future users will belong to
many different information domains. In general one may assume that informa-
tion in one domain is shared with other members of the same domain but that
information is not shared between domains. Examples of domains a user may
belong to are his employer’s corporate Intranet, his family domain and domains
of different associations and groups. In many instances it would certainly be
convenient for a user to have a unified and transparent view of all his informa-
tion in the different domains. Users would in general also like to have exactly
the same information processing capabilities in the different domains. Typical

1



examples would be clients for Personal Information Management (PIM) such as
email, address book, or calendar.

In the future, users will most likely have terminals that are considered to
be personal. Their employer might provide the terminals, but then for user
convenience it will be required that personal information can be stored and/or
accessed as well as company information. The terminal capabilities will vary
greatly in terms of computing power and the bandwidth on the access will also
vary. Wireless cellular access will in relation to other access methods usually
have much smaller bandwidth.

Based on the observations above a user scenario is described below. The
focus is on providing access and security for corporate information while at the
same time provide privacy for the users personal information.

The paper is organized as follows. To motivate the applicability of the
different security architectures to PIM, we start by giving some scenarios in
§4.1. After some preliminaries in §3, we describe two possible ways to maintain
PIM securely; transport security and object security, see §4, §5, respectively. In
§6 we show how to implement a flexible distributed object security architecture.
We compare the two architectures in §7, and give some concluding remarks in
§8.

2 A Scenario

The starting point for the scenario to be presented is the needs of corporate
users to manage personal information in their different roles as employees and
private persons. In the scenario we define different players with certain trust
relations and certain needs to share information. The trust relations together
with corporate policies determine where information can be stored and how
it can be retrieved and processed. We illustrate the problems with email and
calendar functions.

The scenario considered is small and simplified and assumes only three users,
Alice, Bob, and Eve. They work for companies A, B, and E respectively. All
companies have firewall protected Intranets with remote access through security
gateways. Alice, Bob, and Eve have accounts for email and PIM within their
respective company. They use different personal terminals. Typically they use a
laptop as their main terminal and when connected inside the company they have
high-speed (wired/wireless) connections while outside the company low speed
wireless access is the normal case. While on the move they use both PDA’s and
advanced phones to access and process information.

Eve trusts her employer completely and is not afraid that some network su-
pervisor or maintenance person will read her personal mail and calendar and
disclose or use the information inappropriately. So Eve stores also her infor-
mation on a network server. Alice and Bob are more suspicious and keep their
personal information on a private family server. The family server service could
of course be bought from a service provider. Alice and Bob compare the situa-
tion to the way they handle company internal snail mail. They trust the system

2



but still use different kind of envelopes and sealing techniques to ensure the
confidentiality and the integrity of paper messages.

Company Intranet policies usually aim to ensure that corporate information
only is accessible by authorized users. Especially outsiders should have no access
to proprietary company information. This makes it difficult for Eve to share her
private information with persons not employed by company E. However Alice
and Bob are in complete control of their information and may share it with
whomever they want. Still Eve might have problems accessing the information
from inside her company.

Company Intranet policies usually also require that all company information,
wherever it is stored, can be retrieved without the involvement of the user/owner
of the information. So the information stored on Alice and Bob’s laptops might
be revealed to the company unless it is protected/ciphered in a way which makes
it readable only by Alice and Bob respectively.

Alice and Eve are both members of the AE golf club. AE has a server for
keeping the members’ calendars and an email system to provide for message
exchange between the members. The idea is that mails exchanged between
members should not be visible on the Internet and that the calendar information
should simplify finding partners for a round of golf. Of course each user should
only publish what they want to make public to other members. Alice would
of course love to have some automatic mechanism to synchronize her calendars
at work, at home and at the AE golf club. But the mechanism should provide
privacy. A summary of the assumptions presented above used are:

• The company requires protection of corporate data.

• Users require that their private information will be kept private and that
the user should control sharing it with others.

• Users are allowed to have private protected information, stored in their
personal but company owned terminal. At the same time, information
concerning their work should be available to the employer.

• Firewalls and security gateways will make it difficult for non-corporate
users to (use end-to-end security protocols to) access private information
of a corporate user inside the Intranet.

• Users want to have clients providing a unified and transparent view of all
their information.

Notice that the somewhat heterogenous security and information sharing re-
quirements makes it difficult for the parties to co-operate and share information
in a convenient and secure way. In addition the solution may depend on the dif-
ferent terminal capabilities, which must be taken into account, e.g. the trusted
device may be a so called thin client.

3



3 Preliminaries

We shall use the following terminology throughout the text.

Semi-trusted storage. A server/database containing data from one or sev-
eral users performing input/output and disk storage actions according to
specification by the owner of the data. The server may do other things
like try to read or forward the data to other users, but at least it does
what the owner specified.

A semi-trusted server may be considered honest but curious; it stores data
for us but at the same time may pass the data on to someone else, may
try to read or manipulate copies of the data for the purpose of extracting
information. The semi-trusted device is assumed not to be malicious in
the sense that it performs denial of service, e.g. destruction of data.
Henceforth, we do not consider malicious servers, as there is really no way
to protect against them (except that they would probably very quickly be
“out of business”).

An example of a semi-trusted server might be a well known Internet “hot-
mail” server. Some parties might even consider it trusted, although a big
company would probably not trust it with its corporate email without any
additional protection.

Trusted proxy. A server

• performing actions and requests precisely according to specification,
e.g. it does no other manipulations with the user data than it is told
to do and

• satisfying reasonable confidence in the inside administration of the
server and reasonable protection from outside attackers.

Trusted storage. A semi-trusted storage fulfilling the requirements of a trusted
proxy.

Trusted personal device. A trusted storage administered and accessible by
a single user. This is normally the case with a laptop, a Personal Digital
Assistant (PDA) or a cellular phone. Even if the device is owned by the
user’s employer, the data in it is not available to the employer.

Thin client. A computing device with very limited computational, storage,
or I/O (low bandwidth, small display etc) capabilities. Examples are
Palmtop devices or cellular phones. A client may be thin in one or several
of these aspects. A laptop may have thin properties e.g. if the network
access bandwidth is small. However we will mainly think of the worst case
in which the client that is thin in every aspect.

We will also use some common cryptographic terminology for which we refer
to [3]. We assume that secure symmetric and asymmetric encryption schemes
and other necessary cryptographic primitives are available.

4



4 Transport Security Architecture

Definition 1. By a Transport Security Architecture we mean an information
storage system where the information is protected during transport between two
trusted entities in the following way:

• a key agreement between the entities, and

• end-to-end encryption (and possibly other security mechanisms, such as
authentication and non-repudiation) of the data using these key(s).

Trust model: We assume that data resides in trusted storage. The security
mechanisms only apply during transport.

Note that

• Transport security in this sense is independent on which layer in the pro-
tocol stack it is implemented, i.e. not necessarily at transport level. Thus
IPsec [4], TLS [7] and encryption on application layer here all represent
transport security.

• The level of which an implementation is made may of course be of impor-
tance but we make no distinction of this here.

• We do not require data protection in the end entities since we assume
trusted storage.

We will now see how the previously given scenario fits into this architecture.

4.1 The Scenario

Suppose that any of Alice, Bob, or Eve want to access their corporate email from
the public Internet. Though transport security could protect incoming mail to
the corporate networks, it would probably not be possible for them to retrieve
mail by say, logging on from an Internet café as company firewalls are likely to
prevent such access. Thus transport security does not solve the problem.

Since Alice and Bob does not trust the corporate PIM system with their
personal data, they would use a private server for that. Transport security may
protect the contents, but will not give a very convenient way to keep track of
data on two (or more) servers. For instance, Alice would probably first need
to perform session key exchange with each individual server. Moreover, if Eve
wants to make an appointment with either one, how does she know where to
look for all calendar servers involved in keeping track of their appointments?

If the company wants to retrieve information from any of the employee’s
mailboxes, this is of course trivial, as data is stored in the clear on the server.

If Eve forgets her key/password protecting the data, it is likely that she can
simply ask the system administrator to set a new password for her.

5



5 Object Security Architecture

In an Object Security Architecture (OSA) each information item (“object”) is
protected per se, and there are no security requirements on the transport itself.
We first present a quite general definition, and then apply it to the special case
of PIM.

Definition 2. By an Object Security Architecture we mean an information
storage system where the information before transport to, and storage in, a
semi-trusted entity is protected in the following way:

• applying encryption (and possibly other security mechanisms, such as au-
thentication and non-repudiation) to the data using key(s)

• attaching information of the key enabling authorized parties to access the
data.

Notice the similarity with S/MIME [5] in the case when the objects are
emails.

Trust model: The only trusted devices are the trusted personal devices or the
trusted proxies. The security mechanisms apply everywhere except in these.

Notice that this trust model is appealing, as all servers residing on the public
Internet are essentially equal in the sense that they are all at least semi-trusted.
This opens up for a distributed scenario in which many servers can be used
to share data for one particular application (see §6). Also, the points of trust
are much fewer; essentially the user himself and his personal devices, making
security leaks less likely.

An inevitable consequence of the user being in charge of his/her own keys is
the problem of key-recovery.

It is important not to confuse our notion of object security with the perhaps
more common notion of “object oriented security”, as for example in Java or
Corba. There an “object” is an abstraction in the terminology of object ori-
ented programming, and the goal of “object oriented security” is to protect, e.g.
methods and local variables in these “objects”, see e.g. [1].

How could we realize an object security architecture, in the case of “PIM
objects”? The reader may think of a PIM object as e.g. an email, a calendar
entry, or address book entry. There could also be cases where the entire calendar
could be viewed as an object. We will see how these different ways of blocking
data into objects have consequences on the granularity by which the owner can
grant access to his/her data.

5.1 Realization

There may be many ways to implement this, we shall aim at a generalized version
of an S/MIME-based approach applied to PIM-objects (including emails). We
briefly mention S/MIME and then move on to some techniques.

6



5.1.1 S/MIME

On a higher level S/MIME encrypts the email with a randomly chosen key which
in turn is encrypted by the public key(s) of the recipient(s). These, so called
key packages, are appended to the encrypted email and a “header” is attached
describing how to parse the message, which algorithms to use etc. When the
receiver gets the S/MIME object, his mail program parses the message, performs
the necessary cryptographic operations and retrieves the plain text. The same
techniques can of course be extended to handle more general objects than email.
This is precisely what we propose to do, with a few minor adjustments.

5.1.2 Techniques

There are differences in handling email and PIM objects in general. An email
carries static information between a sender and receiver(s) at a given instant. In
principle when the email has been delivered (and read) it has served its purpose.
On the other hand, a general PIM object is first created and stored remotely.
After that the object can be accessed (read/write/edit) many times, since a
PIM object maintains dynamically changing information.

We will use the following notation:

o data object

c encrypted object

Ek(o) Encryption of o with key k using symmetric encryption algorithm

Dk(c) Corresponding decryption of c with key k

Vp(o) Encryption of o with a public key p using asymmetric techniques (it may
also mean a verification of a signature o)

Su(c) Corresponding decryption of c with a secret key u (it may also mean a
signature of c)

H(o) Cryptographic hash of o

u, p are the secret/public key of the owner of the object

For simplicity we thus assume one single public key scheme, which provides
both encryption, decryption, digital signature and verification of signature. For
the purpose of handling general PIM objects, we suggest the following object
formats and procedures for storing and retrieving objects.

Object Format. Two formats are suggested:
For encryption (and optional authentication) of objects, use

Ek(o), {Vpi(k), h(pi)}n
i=0, [σ] (1)

7



Where p0 = p and where p1, . . . , pn are the public keys of the users authorized
by the owner. The optional signature [σ] equals Su applied to everything but
[σ] in (1), see Figure 1.

We will refer to a public-key encrypted key, indexed by the hash of the public
key as a key package.

Ek(o)

-� � �6Su(·)

-�key package

h(p0)

Vp0(k)

· · ·
h(pn)

Vpn(k)

σ

Figure 1: Principal format for secured objects.

For authentication only of objects, use

o, Su(o). (2)

It may seem strange that we allow unencrypted objects since the servers are
only semi-trusted, but this will prove to be useful. We will in the following
interchangingly use “object” both to denote the unprotected plaintext data and
the protected version of it.

General Access Protocol. A user is supposed to request an object from
a storage by sending the hash of his/her public key h(p). The server is specified
to check with the indices in the key packages if this string is included. If so, the
server shall send the entire protected object (1) to the user.

Create Object. This operation takes the plain text object o stored or
created in the trusted personal device, protects it by the format described in
(1) and sends it to a specified semi-trusted storage.

Access Object (by owner or non-owner). A user, j, requests access to
an object from a storage by sending h(pj) and should, if this user is authorized
(has a public key among the key packages), receive the entire protected object
according the protocol. The user client can now (if it indeed holds the secret key
corresponding to the claimed public key pj) decrypt the object and if desired
verify the signature of the owner. Note that even if the server erroneously sends
out the protected object to an unauthorized user, this user still cannot retrieve
the original object.

Update Object. First access the protected object as in the previous sec-
tion, edit the clear text object and create a new protected object as in the
“Create” step. Note that we would normally assume that only the owner can

8



change an object, but any user having rights to create objects on the server
can upload his/her version. Still he/she cannot forge a signature of the original
owner so he cannot change the ownership of the object. In practice, an access
control function should be necessary to keep control over who that can upload
to a server.

Delete Object. The (claimed) owner sends a delete request containing a
pointer to a protected object o and his public key p having corresponding secret
key u. The server replies with a challenge c and expects a signed response Su(c).
Now the server checks the signed response and also that the signature of the
referred object is made with the same p. If so, the server deletes the object.

We are now ready to see how well the problems indicated in §4.1 are solved
with this architecture.

5.2 The Scenario

In an OSA, Alice, Bob, and Eve can access their email and other personal data
in a homogeneous way from anywhere; there is no need for firewalls that needs
to be traversed, at least not for the purpose of protecting the data. Neither is
there a principal need for performing key exchange with the servers as objects are
already protected and can be transmitted “as is”. (Of course, adding transport
security too might be advisable in some cases, see below.)

Moreover, Alice and Bob who are a bit “paranoid” can themselves decide who
can access their objects, and does not need to rely on a third party maintaining
a server securely. This access can be granted at different levels on granularity,
by for instance setting individual rights to entries in a calendar, rather than to
the entire calendar itself.

When data objects are to be distributed on different servers, also in this case
there is a problem to know where to find the locations. We discuss this below,
and for the moment just note that at least, one does in principle not need to
perform transport security key exchanges with each individual server.

One thing that needs to be taken care of however, is to enable a corporation
to access data belonging to its employees, as even if they are stored on a com-
pany server, the data is now encrypted by user selected keys. To ensure such
access, we can for instance force the user to add a key package for the system
admnistrator. Thus, before storage is allowed, the server/system checks that a
valid key package indeed has been added (see later discussion). If a user loses
the key this mechanism is also applicable for key recovery.

What remains is to discuss how a user can create a “unified view” on data
that is distributed over several servers and how one publishes information on
where in this architecture other users can find data belonging to a given owner,
see §6.

9



5.2.1 Practical Experience

We have implement an object security based architecture for corporate email.
Mail created in, or sent to, the Intranet are handled by a trusted proxy that
encapsulates them as secured objects, and forwards them to a semi-trusted
server located outside some corporate firewalls. User can then, for instance
when traveling, access their email in a convenient way, see [2] for details.

5.3 Issues

5.3.1 Security

Confidentiality, integrity, and non-repudiation protection is clearly obtained by
the above procedures.

There might be cases where, for convenience, confidentiality is not wanted.
For instance, a user may by willing to publicly display which times he has
appointments (without disclosing the content of the appointments). This is
possible using the format (2) above.

Privacy is an issue for the owner as well as the authorized users. First of
all, it seems hard to obtain privacy to the users without sacrificing the non-
repudiation of the object.

Without any normal user authorization and access control to the server, any-
one can essentially find out whether a given user has right to access a particular
object. In practice such access control will exist, to prevent the server from
being an easy target to denial of service. Since there is no transport security it
is possible to determine if one user reads the same data as yesterday, two users
access the same object etc. Adding transport security would prevent a passive
eavesdropper from obtaining such information although the trust model of the
server does not exclude the possibility of it sending the objects to anyone.

With the protocols suggested, it is not possible to create complete privacy
for the users, since it is possible by trial and error to query the server, thereby
learning which users that are allowed to access a certain object. However, with
some minor adjustments we can obtain some degree of privacy for the owner
and all users with respect to passive or active attackers that are not in league
with the server, but eavesdrops or intercepts the protocol. Since the the server
is only semi-trusted, we cannot hope to achieve better.

We now describe one way of doing this. The following protected object is
uploaded from the owner for storage

Ek1(o), MACk2(o), {Vpi(k), h(pi)}n
i=0, [σ] (3)

using the same notations as previously and where k1, k2 are derived from the
master key, k, and MACk2(·) is a (keyed) Message Authentication Code using
the key k2.

Again, the optional signature [σ] is obtained from Su applied to the first
three parts of (3). Furthermore, the access protocol is modified in this way:

10



Upon request of an object accompanied by an (alleged) h(pj), the server checks
this with the key packages of the protected desired object. If it is included, send

Ek1(o), MACk2(o), Vpj (k) (4)

otherwise send
Ek1(o),MACk2(o), r (5)

where r is randomly chosen and of appropriate length.
Note that privacy protection is not complete, as any of the authorized users

may determine if another user is authorized or not, but an unauthorized user
cannot.

Also, this MAC-based solution can be used to implement “corporate key-
escrow” as it is now very easy to check that the system administrator has a
valid key package. (Though we of course cannot guarantee that o itself is not
already encrypted with another key.)

5.3.2 Scalability

There are two scalablilty issues; the number of authorized users and the num-
ber of servers on which the owner distributes the objects. We postpone the
discussion of the latter until §6.

First, a large scale implementation requires a Public Key Infrastructure
(PKI) or a Web of Trust, e.g. PGP. The size of the object in relation to the
number of users determines the storage efficiency of this architecture. A single
key package created with a reasonable security level requires about 400–1000
bits depending on the encryption technique. Although it is in principle pos-
sible to set individual rights to each individual item, in practice this will not
be done for efficiency. The access to the objects may be set with a coarser
granularity, for instance to an entire calendar rather than an individual item;
or one key for the calendar index, stating when the owner is busy and one key
for the actual calendar items. Of course, a group key distribution scheme may
increase the efficiency whereby cryptographic access is granted depending on
group membership.

The revocation of a previously authorized user can be done by re-encrypting
all objects accessible by that user with a new key and adding key packages of
the authorized users.

Adding a user is simpler, since the old key packages can be downloaded and
reused, simply by adding a key package for the new user, sign and upload.

5.3.3 Thin Client

To make things more realistic (and complicated) we assume that the trusted
personal device is a thin client. Since all clear text operations as well as en-
cryption and signing is done in the trusted device, such an assumption implies
significant constraints on the implementation of the actual scheme, on feasi-
ble applications and also on the number of users. Here are some examples of
research areas that have a direct relevance for this case.

11



Incremental Cryptography. This is based on the idea of being able to
sign/encrypt only recently updated blocks/parts of a large file/object. This
seems to be a useful technique since it may save bandwidth during transfers
and lighten the computational burden on the client. See the references for some
techniques in this area.

Server-Assisted Cryptography. Here the idea is for the thin client to get
help from a (semi-trusted) server to perform heavy calculations. e.g. public key
operations. The problem is to avoid that the server learns sensitive information
either of the object or of the cryptographic keys (and of course not actually
do more work in the client to assure this). A number of techniques exist, see
References.

Operations on Encrypted Data. Suppose that an object contains a
number of sub-objects, i.e. actual appointments in a calendar-object. How do we
determine whether a certain string occurs in his emails. We would typically need
to download the entire mailbox, decrypt, and then search the plain text data.
However, it is in some cases possible to have the server performing operation
on the encrypted data without supplying him with the keys, searching being
one example of this. In fact it can be done without even disclosing the search
pattern. This is done with special encryption techniques see [6].

It would be interesting to look into these areas further.

6 Distributed Architecture

We now address the question of how to manage personal information with dis-
tributed storage. We can think of a calendar with items on several semi-trusted
servers. The questions we address are: –How can the owner get a unified view
of the entire calendar? –How can an authorized user get access of the owner’s
various calendars? We have already seen how the owner can restrict access to
the content of certain appointments, now we also discuss how the owner can
restrict access to/knowledge of specific calendars to specific users.

We have previously discussed the option to have access control lists in the
server. If the server was completely trusted, we could count on him checking
authorization before granting access to users, but we are only assuming semi-
trust. Here is a way to solve this problem, again by object security.

We know that Alice has at least three calendars: work, private, and golf
club. Suppose that Eve and Alice are not only members of the same golf club,
but also has a business relation. Alice might want to share her golf- and work
calendars with Eve, but perhaps not her private. To accomplish this, since they
are both members of the golf club, Alice creates an access control list stored
at the golf club server which contains a link to the server handling her work
calendar, encrypted by Eve’s public key. When Eve accesses the golf calendar,
she will also be given this protected link by the server. Thus, Eve can get a
calendar view, consisting of the union of the golf- and work calendars of Alice.

12



Of course Alice can still restrict access to the individual calendar items in
both calendars as described above. For instance, she might want to publish the
time intervals (treating them as objects) when she is busy, but not what she is
doing.

Alice could have many friends and calendars, and she can by treating the
links to other calendars as objects, completely control who sees what.

There is of course some work to do when a person should become included
or excluded from certain calendars. A user friendly administrative software
running in Alice’s trusted personal device is absolutely necessary.

6.1 Privacy

The goal with the above distributed architecture is to achieve user-controlled
privacy. However, complete protection seems difficult. Even if the links between
calendars are encrypted, traffic analysis might establish, or give hints to, how
data is distributed among servers.

7 Architecture Comparison

There are two main strands in the choice of security architecture. In a transport
security architecture (TSA) a data link is set-up between client and the server,
and to protect the link against attacks, well-known security protocol like IPsec,
TLS, or SSH are used. In an object-based architecture (OSA) each information
item is protected per se, and there are in principle no security requirements
on the transport itself. Only the intended recipient(s) is able to see the con-
tents, which remains encrypted. The security technology can be provided by a
generalization of S/MIME.

There are several pros and cons for both architectures. In both cases the
data is only protected while not residing in a trusted server, but the trusted
environments are different. In TSA, security is coarse-grained and a client has,
after authentication, access to the whole domain attached to the other end of the
link. The domain itself is usually protected by a strong perimeter. For example,
virtual private network (VPN) tunnels into an Intranet extend the Intranet to
the user’s client. To reduce risks, before introducing VPN, some Intranets are
restructured in order to restrict resource access. All this implies more costs and
complexity and affects the corporate security policies and firewalls.

By contrast, in OSA, fine-grained security is employed and since the infor-
mation items are secured, they can be transported over any type of network
and stored anywhere, even outside the trusted domain, on untrusted servers
allowing for data to be mobile. This simplifies the access problem, but adds
complexity to the protocols that manipulate the data. Since information is en-
crypted, only the intended recipient can manipulate it and thus operations like
searching, sorting and adaptation may need to be performed in the client. This
might be a problem on thin clients or over narrow access channels. Such oper-
ations can possibly be off-loaded to trusted proxies, or applying server-assisted

13



crypto techniques that aid the client. The challenges here are to find techniques
that entirely remove the need for a trusted proxy or to design a proxy that
minimizes the risk of exposing confidential data. In the latter case, we also need
mechanisms for temporal delegation of rights from the user to the trusted proxy.

The client must handle information from different domains and should pro-
vide a unified and transparent view. This can be done in the client itself,
provided it is powerful enough. The client gets the views from the distributed
domains and then integrates them. The other way is to have the domains syn-
chronize against a single untrusted server, to which various clients have access.

8 Conclusions

Object security and transport security architectures solve different problems.
A security architecture which works under the assumptions in the scenarios
summarized above must have elements of object security to guarantee protection
of user data.

The OSA opens up for an easy way to distribute and share personal infor-
mation securely according to a personal security policy set by the user himself.

A lot of intriguing research problems, e.g. different kinds of server assisted
and incremental cryptography would have direct practical implications in this
setting.

References

[1] Blakely B.: Corba Security. Addison-Wesley, 1999.

[2] Gehrmann C.: Flexible Corporate S/MIME Security Architecture. Pro-
ceedings, Nordsec ’99, pp. 85–96, Dept. of Computer and Systems Sciences,
Stockholm University, 1999.

[3] Menezes A., van Oorschot P., Vanstone S.: Handbook of Applied Cryptog-
raphy. CRC press, 1997

[4] RFC 2401: Security Architecture for the Internet Protocol. IETF.

[5] RFCs 2630, 2631, 2632, 2633: S/MIME Proposed Standard. IETF.

[6] Song D. X., Wagner D., Perrig A.: Practical Techniques for Searches on
Encrypted Data. Proc. of IEEE Security and Privacy Symposium, May
2000.

[7] RFC 2246: The TLS Protocol Version 1.0. IETF.

Server-Assisted Cryptography

[8] Anderson R. J.: Attack on Server-Assisted Authentication Protocols. IEE
Electronics Letters 28(15), p. 1473, 1992.

14



[9] Burns J., Mitchell C. J.: Parameter Selection for Server-Aided RSA Com-
putation Schemes. IEEE Trans. On Computers 43(2), 163–174, 1994.

[10] Horng G.: An active attack on protocols for server-aided RSA signature
computation. Information Processing Letters, 65(2), 71–73, 1998.

[11] Horng G.: A Secure Server-Aided RSA Signature Computation Protocol
for Smart Cards. J. Inf. Sci. and Eng. 16, 847–855, 2000.

[12] Merkle J.: Multi-Round Passive Attacks on Server-Aided RSA Protocols.
Proceedings, CCS ’00, pp. 102–107, 2000.

[13] Merkle J., Werchner R.: On the Security of Server-aided RSA Protocols.
Electronic Colloquium on Computational Complexity (ECCC), TR97-027,
1997. http://www.eccc.uni-trier.de/eccc/

Incremental Cryptography

[14] Bellare M., Goldreich O., Goldwasser S.: Incremental Cryptography: The
Case of Hashing and Signing. In “In Advances in Cryptology – Crypto
1994”, Lecture Notes in Computer Science, Vol. 839, pp. 216–233, 1994.

[15] Bellare M., Goldreich O., Goldwasser S.: Incremental Cryptography and
Application to Virus Protection. Proceedings of 27th ACM STOC, pp. 45–
56, 1995.

[16] Bellare M., Micciancio D.: A New Paradigm for Collision-free Hashing:
Incrementality at Reduced Cost. In “Advances in Cryptology – Eurocrypt
97 Proceedings”, Lecture Notes in Computer Science Vol. 1233, pp. 163–
192, 1997.

[17] Fischlin M.: Incremental Cryptography and Memory Checkers. In “Ad-
vances in Cryptology – Eurocrypt ’97”, Lecture Notes in Computer Science,
Vol.1233, pp. 393–408, 1997.

[18] Fischlin M.: Lower Bounds for the Signature of Incremental Schemes.
Proceedings, 38th IEEE FOCS, pp. 438–447, 1997.

[19] Micciancio D.: Oblivoius Data Structures: Applications to Cryptography.
Proceedings, 29th ACM STOC, pp. 456–464, 1997.

15


